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Abstract

Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous
incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The
immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally
introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of
the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method.
This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the two-
dimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed bound-
ary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of
the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509–534] and is based on a formally second order accurate
(i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that
we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher
order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75–105]. Actual second order con-
vergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incom-
pressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this
methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the
adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the
method, but the flow in the vicinity of the model heart valves indicates that the new methodology provides enhanced bound-
ary layer resolution. Differences are also observed in the flow about the mitral valve leaflets.
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1. Introduction

Many problems in biofluid mechanics can be modeled as the dynamic interaction of a viscous incompress-
ible fluid and a (visco-)elastic structure. One example is cardiac mechanics. In the approach of Peskin and
McQueen [4–9], the blood is modeled as a viscous incompressible fluid, whereas the muscular heart wall is
modeled as a thick viscoelastic structure with time-dependent elastic parameters, and the flexible heart valve
leaflets are modeled as thin elastic boundaries. The immersed boundary method is a mathematical formulation
and numerical approach to such problems originally introduced by Peskin to study blood flow through heart
valves [10,11]. In the immersed boundary formulation of problems involving the interaction of a viscous
incompressible fluid and an incompressible elastic or viscoelastic structure, the configuration of the elastic
structure is described by Lagrangian variables (i.e., variables indexed by a coordinate system attached to
the elastic structure), whereas the momentum, velocity, and incompressibility of the coupled fluid–structure
system are described by Eulerian variables (i.e., in reference to fixed physical coordinates). In the continuous
equations of motion, these two descriptions are connected by making use of the Dirac delta function, whereas
a smoothed approximation to the delta function is used to link the Lagrangian and Eulerian descriptions when
the continuous equations are discretely approximated for computer simulation.

Simulating fluid–structure interaction by the immersed boundary method requires the use of high spatial
resolution; however, in many cases, this requirement is somewhat localized to the flow in the neighborhood
of the immersed boundaries [1,2]. For the flow away from the immersed boundaries, the need for high spatial
resolution is somewhat lessened, although it may be needed in regions of high vorticity, e.g., in the neighbor-
hood of vortices that have been shed from the boundaries and have subsequently moved away from the
boundaries into the interior of the flow. If a uniform grid is employed to discretize the (Eulerian) equations
of motion for such simulations, the fine grid spacing required to resolve the flow near the immersed boundaries
is necessarily employed throughout the entire computational domain, even in regions that may not require
such high resolution. By employing an adaptive discretization of the equations of motion, high spatial reso-
lution can be deployed locally where it is most needed, whereas comparatively coarse resolution can be
employed where it suffices. In principle, such an adaptive scheme would allow for more efficient utilization
of computational resources when compared to non-adaptive strategies, although realizing such gains in prac-
tice requires the careful design and implementation of a number of algorithms and data structures.

An adaptive version of the immersed boundary method was first introduced in the Ph.D. thesis of Roma [1]
and the subsequent work of Roma et al. [2]. In this earlier work, the hierarchical structured grid approach of
Berger and Oliger [12] and Berger and Colella [13] was employed to introduce local spatial refinement in the
Eulerian grid in the vicinity of an immersed elastic interface. The simulated dynamics produced by this adap-
tive version of the immersed boundary method were demonstrated to be virtually identical to those obtained
by a non-adaptive method that employed a uniform grid with the same spatial resolution as that of the finest
grid level in the adaptive computation. That is to say, despite the fact that the adaptive computation only
deployed high spatial resolution in a localized region about the elastic interface, the adaptive results were
not significantly different from those obtained by a non-adaptive method that employed a uniformly fine
Cartesian grid.

In the present work, we describe a new adaptive version of the immersed boundary method for problems of
fluid–structure interaction, provide empirical convergence results that demonstrate the accuracy of this
method for a two-dimensional model problem, and present initial results from the application of this adaptive
methodology to the three-dimensional simulation of cardiac fluid mechanics. The present adaptive method is
based upon a non-adaptive, formally second order accurate version of the immersed boundary method
recently described by Griffith and Peskin [3]. Like the uniform grid algorithm upon which it is based, this
new adaptive version of the immersed boundary method is formally second order accurate in the sense that
the method is expected to converge at its formal order of accuracy only for problems that possess sufficiently
smooth solutions. The present adaptive algorithm employs the same hierarchical structured grid approach
(but a different numerical scheme, see below) as that used by Roma, Peskin, and Berger to discretize the Eule-
rian equations of motion (i.e., the incompressible Navier–Stokes equations). Unlike the method of Roma
et al., the present algorithm employs a fully explicit treatment of the Lagrangian equations of motion (i.e.,
the equations that specify the evolution of the configuration of the elastic structure). In particular, in an
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attempt to reduce the occurrence of non-physical oscillations in the computed dynamics, we employ a strong
stability-preserving Runge–Kutta method [14] for the time integration of the Lagrangian equations of motion.
The present method differs more dramatically from the approach of Roma et al. in the details of its treatment
of the Eulerian equations of motion, namely the incompressible Navier–Stokes equations. Although both
adaptive schemes employ projection methods to solve the incompressible Navier–Stokes equations, the pres-
ent work employs a cell-centered projection method that makes use of an implicit L-stable discretization of the
viscous terms [15,16] and a second order Godunov method for the explicit treatment of the nonlinear advec-
tion terms [17–20]. Generally speaking, projection methods [21–23] are a class of fractional step algorithms for
incompressible flow problems that update the velocity by first solving the momentum equation over a time
interval without imposing the constraint of incompressibility. Doing so yields an intermediate velocity field
that is generally not divergence free. The true updated velocity is then obtained by solving a Poisson problem
to enforce the incompressibility constraint. More abstractly, this process projects the intermediate velocity
onto the space of divergence free vector fields.

In an ‘‘exact’’ projection method, the discrete divergence of the updated velocity is identically zero (or zero
to within the tolerance of the linear solver in practice). Even on uniform grids, however, exact cell-centered
projections present difficulties. For example, on a periodic grid with an even number of grid cells in each coor-
dinate direction, an exact projection operator possesses a non-trivial nullspace that causes the pressure to
decouple into 2d subfields, where d is the number of spatial dimensions. To date, it appears that exact cell-cen-
tered projections have not been successfully implemented for co-located cell-centered velocities defined on
hierarchically composed locally refined grids (i.e., such as those used in the present work). Like most recent
projection methods for locally refined grids [19,20,24], the present scheme employs a projection method that
is not exact but rather is ‘‘approximate’’ in the sense that the discrete divergence of the velocity only converges

to zero at a second order rate as the composite computational grid is refined. (Note that unlike exact projection
methods, approximate projection methods typically yield a fully coupled pressure field on both uniform and
locally refined grids.) When such methods are used with the immersed boundary method, we have found that it
is beneficial to determine the updated velocity and pressure in terms of the solutions to two different approx-
imate projection equations at each timestep. This so-called hybrid approach was originally proposed by Alm-
gren et al. for simulating inviscid incompressible flow [25]. Our hybrid projection algorithm, which we first
detailed in the non-adaptive context [3], is essentially an extension of their inviscid hybrid method (‘‘version
5’’) to the viscous case. The adaptive version of our projection method is also similar to earlier adaptive invis-
cid schemes described by Minion [19] and Martin and Colella [20]; however, note that we employ a somewhat
different discretization at interfaces in grid resolution. In particular, for two-dimensional locally refined grids,
we employ finite difference discretizations of the gradient and Laplace operators that were introduced by
Ewing et al. [26], and in three spatial dimensions, we make use of a straightforward generalization of their
approach. Note, however, that Ewing et al. consider only the issue of the accurate discretization of second-
order elliptic equations on locally refined grids, not the solution of the incompressible Navier–Stokes equa-
tions. To our knowledge, this is the first application of their discretization approach to the simulation of
incompressible flows. We believe that this particular treatment is more easily implemented than the
approaches of e.g. [19,20,24]. Moreover, this treatment also appears to yield a globally second order accurate
projection method [27]. As this approach could be useful in other application areas that require the adaptive
simulation of incompressible flows, we include a complete description of the interpolation and finite difference
operators that we employ in our cell-centered adaptive projection method for both two- and three-dimensional
locally refined grids.

As in our earlier uniform grid study [3], actual second order numerical convergence rates are observed when
our adaptive immersed boundary method is used to simulate the interaction of a viscous incompressible fluid
and a viscoelastic shell (i.e., a body which, although thin, is not infinitely thin). As was first done in [3], we
again consider the accuracy of the immersed boundary method for anisotropic incompressible viscoelastic
shells with two sets of elastic properties. In the first case, the stiffness of the shell tapers to zero at its edges,
so that there is a continuous transition in material properties between the fluid and the structure. We also con-
sider the case in which the stiffness of the shell is constant, so that there is a sharp discontinuity in the material
properties of the coupled system at the fluid–structure interface. At least for the moderate Reynolds number
flows considered here, the dynamics generated by the adaptive scheme are virtually identical to those gener-
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fiber direction that exists at each point of the heart wall. This fiber orientation is already accounted for in our
anisotropic model of the elasticity of the heart wall, and it will not be difficult in future work to generalize this
anisotropic elasticity model to include fiber-aligned anisotropic viscous effects. At present, however, we only
include the isotropic viscosity of the background fluid that is everywhere in an immersed boundary
computation.

When discretized, each of the structures of the model is described by a system of one-dimensional elastic
fibers: in the case of the valves, the fibers mainly correspond to passive collagen fibers; in the great vessels,
they correspond to smooth muscle tissue; and in the myocardium, they correspond to active muscle fibers that
possess time-dependent contractile properties. (As the Lagrangian mesh is refined, however, note that this dis-
crete representation approaches the continuous limit described above.) Although a complete description of the
elastic properties of these structures is beyond the scope of the present work, most of the forces generated by
the elasticity of the model heart are computed in the manner described in Sections 3 and 4, although the fiber
tension is determined differently. In particular, the elastic parameters of the fibers, such as the fiber stiffnesses
and resting lengths, vary both temporally (to simulate active, contractile muscle) and spatially (to model the
delay in contraction between the atria and the ventricles). Nonetheless, implementing the elastic properties
specified by the model requires no major changes to the presented numerical scheme because at each timestep
the elastic parameters are constant and known. Note that more complete descriptions of the model are avail-
Fig. 7. A prominent vortex is shed from the mitral valve leaflets and migrates to the interior of the left ventricle of the model heart during
atrial systole. Note that the present view is from the front of the model heart, so that the left ventricle appears on the right side of the
figure. The flow of blood within the heart is indicated by passive fluid markers. The present positions of the fluid markers are shown, and
attached to each marker is a dark tail that indicates the recent trajectory of that marker. A superimposed arrow indicates the direction of
fluid flow around the vortex. The fibers that comprise the model heart, including the muscular heart wall, the thin valve leaflets, and the
great vessels, appear in gray. Again, note that only a subset of the model fibers are displayed in each figure.





Fig. 9. A prominent clockwise (in the present view) vortex forms in the left ventricle about the jet of inflow through the mitral valve during
atrial systole and prior to ventricular systole. The present view looks up from the left ventricle, through the open mitral valve, and into the
left atrium. As before, the flow of blood within the model heart is indicated by passive fluid markers, and once again, a superimposed
arrow indicates the direction of fluid flow. In the present figure, however, only the fibers that comprise the mitral valve are shown. Note
that this particular feature of the flow did not appear in earlier simulations [7–9], and the physiological significance of this particular
swirling motion, if any, is presently unknown.
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The timestep size is determined to ensure that the CFL number never exceeds 0.1, and hence it suffices to
regrid the patch hierarchy every nregrid = 10 timesteps. To allow for more direct comparison with earlier com-
putations performed by McQueen and Peskin, the present simulation employs the four-point delta function,
dIB

4h , which is defined in e.g. [30].
Although the simulation results obtained by the present methodology show good qualitative agreement

with results obtained by earlier versions of the immersed boundary method [7–9], there are two notable
differences between the present computational results and earlier ones. First, the present methodology
appears to provide dramatically enhanced boundary layer resolution when compared to earlier versions
of the immersed boundary method. This is indicated by the flow through the arterial valves (i.e., the aortic
and pulmonic valves). In particular, to prevent failure of the outflow valves during the initial portion of the
simulation when the heart is first pressurized, we found that it was necessary to narrow the gaps between
the leaflets of both the model aortic and pulmonic valves. The necessity of gaps between the valve leaflets
may strike the reader as non-physical; however, as we briefly describe, gaps are necessary in all cases: Note
that the interpolated velocity field obtained via the regularized delta function is continuous, so that if the
physical positions of two material points happen to coincide at some time t = T, they necessarily coincide
for all time t P T. Thus, in the absence of gaps between the valve leaflets, it would not be possible for the
valves to open. When the valve spacings employed in [7–9] were used with the present version of the
immersed boundary method, regurgitrant fluid jets formed near the tips of the valves leaflets, resulting
in valve failure. It is important to emphasize that the original wide spacings yielded competent valves
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6. Conclusions

In the present work, we have introduced a formally second order accurate adaptive version of the immersed
boundary method, examined the performance of this scheme for a prototypical fluid–structure interaction
problem, and presented results from the application of this adaptive method to the simulation of cardiac
blood-muscle-valve mechanics. This new algorithm is an extension of the uniform grid method described in
[3], and both the present adaptive method and its uniform grid counterpart are differentiated from most pre-
vious versions of the immersed boundary method by their inclusion of several numerical methods intended to
reduce the occurrence of non-physical oscillations in the computed dynamics. In particular, we use a strong
stability-preserving Runge–Kutta method for the time integration of the structure configuration, an implicit
L-stable discretization of the viscous terms in the momentum equation, and a second order Godunov method
for the explicit treatment of the nonlinear terms in the momentum equation. We also employ a new hybrid
approximate projection method for the incompressible Navier–Stokes equations, a method which has been
demonstrated to reduce the occurrence of oscillations in the computed pressure for both uniform and adap-
tively refined computations [3,27]. To date, we have used this new adaptive hybrid projection method only in
the context of the immersed boundary method, but the same algorithm could be used in any application area
that would benefit from a locally adaptive projection scheme.

By considering fluid–structure interaction problems which possess sufficiently smooth solutions, actual sec-
ond order convergence rates were demonstrated in our numerical tests of the method for moderate Reynolds
number flows. Unlike most previous convergence studies for the immersed boundary method, however, we
did not consider the interaction of a true interface and an incompressible fluid. When the immersed boundary
method is applied to such problems, second order convergence rates are not observed because of the inability
of the method to resolve accurately the discontinuities in the pressure and in the normal derivative of the
velocity across the interface. We avoided these discontinuities by considering the interaction of an anisotropic
incompressible viscoelastic shell of finite thickness and an incompressible fluid, but note that global second
order or nearly second order convergence rates were observed not only for the case that there is a smooth
transition in material properties at the fluid–structure interface but also for the case in which there is a sharp

transition in material properties. Such problems are in some sense not as difficult as true interface problems;
nonetheless, they are relevant to many application areas where the immersed boundary method is used. A
particularly relevant example is the model of the heart and nearby great vessels we employ to simulate cardiac
blood-muscle-valve mechanics (see Figs. 6–12 and also [6–9]). Although this model uses thin elastic bound-
aries to describe the heart valve leaflets, the description of the muscular left ventricular wall is that of an
incompressible viscoelastic shell – albeit one with complex, time-dependent, and highly anisotropic elastic
properties.

In the present work, we demonstrated for a two-dimensional test problem that our adaptive scheme pro-
duces results that are substantially the same as those obtained by the equivalent uniform grid method (i.e.,
results that are largely identical to those obtained on a uniform grid with resolution that is equal to the highest
resolution employed in the adaptive computation). In particular, the adaptive scheme was demonstrated to
yield convergence rates that were virtually identical to those produced by the equivalent uniform grid method.
Moreover, we found that the adaptive method produced dynamics that were essentially the same as those pro-
duced by the equivalent non-adaptive scheme. This is not a surprise, perhaps, since in the test problems con-
sidered, the dominant errors in the computed solutions appear to be localized near the fluid–structure
interface. In such situations, the least resolved portions of the solution will always be embedded in the finest
level of the adaptively refined grid and will generally lie away from coarse-fine interfaces. Nonetheless, this
result has important practical implications, since it indicates that for problems with localized fine scale fea-
tures, it may be possible to obtain well resolved simulation results by adaptively deploying very high spatial
resolution in only a limited portion of the computational domain.

We also presented simulation results obtained by applying the present adaptive method to the McQueen/
Peskin model of cardiac mechanics. Timing results obtained for these simulations demonstrate that the use of
adaptive mesh refinement reduces the computational resources required to perform simulations of cardiac
blood-muscle-valve mechanics. These simulation results also indicate that the new methodology provides dra-
matically enhanced boundary layer resolution compared to earlier versions of the immersed boundary
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method. Additionally, new features were observed in the flow patterns in the vicinity of the mitral valve. In
both the present and earlier results, a prominent vortex is shed from the mitral valve leaflets and migrates
to the interior of the left ventricle. A notable difference between the present simulation results and earlier ones,
however, is the appearance in the present results of an additional vortex that swirls about the jet of inflow
through the mitral valve prior to ventricular contraction. The physiological significance of this swirling motion
is presently unknown, and it may be the product of non-physiological features of the present model heart or of
inadequate spatial resolution. Alternatively, this could be our first glimpse of a physiological flow pattern that
impacts mitral valve function. In any case, the resolution of this issue is beyond the scope of the present work
and clearly merits further investigation.

Finally, we note that in the present work we have not described an important aspect of our methodology,
namely the parallel implementation of this new adaptive immersed boundary method. This topic is
addressed in [27]. We note here, however, that the parallel implementation relies on the SAMRAI (Struc-
tured Adaptive Mesh Refinement Applications Infrastructure) object-oriented C++ framework which is
developed at the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory
[47–50], the PETSc (Portable, Extensible Toolkit for Scientific Computation) library which is developed
at the Mathematics and Computer Science Division at Argonne National Laboratory [51–53], and parallel
multigrid solvers that are developed as part of the hypre project at the Center for Applied Scientific Com-
puting at Lawrence Livermore National Laboratory [54,55]. Although we provide preliminary timing results
in Section 5, a more complete examination of the performance of our parallel implementation remains
future work.
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